Gyrokinetic turbulence simulations with kinetic electrons*
نویسندگان
چکیده
Gyrokinetic turbulence simulations are presented with full drift-kinetic electron dynamics including both trapped and passing particle effects. This is made possible by using a generalization of the split-weight scheme �I. Manuilskiy and W. W. Lee, Phys. Plasmas 7, 1381 �2000�� that allows for a variable adiabatic part, as well as use of the parallel canonical momentum formulation. Linear simulations in shearless slab geometry and nonlinear simulations using representative tokamak parameters demonstrate the applicability of this generalized split-weight scheme to the turbulence transport problem in the low � regime ��(mi /me)�1� . The issues relating to difficulties at higher � , and initial three-dimensional toroidal simulations results will be discussed. © 2001 American Institute of Physics. �DOI: 10.1063/1.1351828�
منابع مشابه
Global gyrokinetic particle simulations with kinetic electrons
A toroidal, nonlinear, electrostatic fluid-kinetic hybrid electron model is formulated for global gyrokinetic particle simulations of driftwave turbulence in fusion plasmas. Numerical properties are improved by an expansion of the electron response using a smallness parameter of the ratio of driftwave frequency to electron transit frequency. Linear simulations accurately recover the real freque...
متن کاملParticle-in-cell simulation with Vlasov ions and drift kinetic electrons
There are certain limitations in using gyrokinetic ions for simulations of turbulent transport in tokamak plasmas. Applications where Vlasov ions might be more appropriate include the electron temperature gradient driven turbulence, edge turbulence with steep density gradient, and magnetic reconnection in a weak guide field. In such cases the ion gyrokinetic model presently used in simulations ...
متن کاملGyrokinetic Simulations of Tokamak Micro-Turbulence Including Kinetic Electron Effects
A gyrokinetic toroidal particle code for a 3-dimensional nonlinear turbulence simulation (GT3D) has been developed to study the ion temperature gradient driven – trapped electron mode (ITG-TEM) turbulence in tokamak plasmas. From linear zonal flow damping tests and nonlinear ITG simulations, it is shown that a new method based on a canonical Maxwellian distribution is essential to simulate corr...
متن کاملCollisions in Global Gyrokinetic Simulations of Tokamak Plasmas Using the f Particle-In-Cell Approach: Neoclassical Physics and Turbulent Transport
The present work takes place within the general context of research related to the development of nuclear fusion energy. More specifically, this thesis is mainly a numerical and physical contribution to the understanding of turbulence and associated transport phenomena occuring in tokamak plasmas, the most advanced and promising form of magnetically confined plasmas. The complexity of tokamak p...
متن کاملGlobal gyrokinetic simulations of TEM microturbulence
Global gyrokinetic simulations of electrostatic temperature-gradient-driven trapped-electron-mode (TEM) turbulence using the δf particle-in-cell code ORB5 are presented. The electron response is either fully kinetic or hybrid, i.e. considering kinetic trapped and adiabatic passing electrons. A linear benchmark in the TEM regime against the Eulerian-based code GENE is presented. Two different me...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001